Learning Outcomes:
By the end of this module students should be able to understand and implement Bayesian statistical methods to a wide variety of data sets. They should be able to check the model and give a critique of the Bayesian process as opposed to its Frequentist counterpart.
Indicative Module Content:
Indicative content covered in this moduel will include:
+ A recap of the some basic concepts in probability theory.
+ Introduction to Bayesian statistics
+ Bayesian linear regression
+ Hierarchical models
+ Model comparison