Show/hide contentOpenClose All
Curricular information is subject to change
The student will be able to define and classify stochastic models, and be able to outline how to construct a stochastic model. The student will be able to apply Markov chains and Markov jump processes and other stochastic processes to actuarial and other applications, solving for their short run and long run behaviour.
Student Effort Type | Hours |
---|---|
Autonomous Student Learning | 89 |
Lectures | 18 |
Tutorial | 10 |
Total | 117 |
The student will have an aptitude for mathematics, with a profligacy to 1st years honours level, and have taken level 2 modules in statistics.
Learning Recommendations:Knowledge of probability theory and basic statistics to the level of the Probability Theory (STAT20110) and Inferential Statistics (STAT20100) course. Good knowledge in calculus (integrals, differentials) and linear algebra (vectors, matrices, eigenvalues).
Resit In | Terminal Exam |
---|---|
Spring | Yes - 2 Hour |
• Group/class feedback, post-assessment
Not yet recorded.
Name | Role |
---|---|
Mr Matt Nagle | Tutor |