Explore UCD

UCD Home >

STAT20100

Academic Year 2024/2025

Inferential Statistics (STAT20100)

Subject:
Statistics & Actuarial Science
College:
Science
School:
Mathematics & Statistics
Level:
2 (Intermediate)
Credits:
5
Module Coordinator:
Dr Leonard Henckel
Trimester:
Spring
Mode of Delivery:
On Campus
Internship Module:
No
How will I be graded?
Letter grades

Curricular information is subject to change.

Probability theory, large sample theory, statistical inference. Purpose: create a mathematical framework to study random phenomena, and to make decisions in a state of uncertainty.

About this Module

Learning Outcomes:

A good understanding of multivariate probability distributions, including conditional and marginal distributions. An ability to calculate and understand covariance and correlation coefficients. A knowledge and appreciation of the central limit theorem. A good understanding of the theory of estimation, including various methods for estimating parameters either with point estimates or confidence interval estimates. An ability to formulate and test statistical hypotheses and statements. An understanding of the methodology of many commonly used statistical tests. A good understanding of the principles of statistical decision theory and of optimality of estimators.

Indicative Module Content:

Probability theory: Continuous bivariate and multivariate distributions. Covariance and correlation. Chebyshev inequality. Law of Large Numbers. Central Limit Theorem and applications.

Statistics: Theory of Estimation. Method of moments, and maximum likelihood. Point and interval estimation. Properties and optimality of estimators. Hypothesis Testing. Simple and Composite Hypotheses. Neyman-Pearson Lemma and applications. Likelihood ratio tests. Introduction to statistical decision theory.

Student Effort Hours:
Student Effort Type Hours
Lectures

24

Tutorial

20

Specified Learning Activities

20

Autonomous Student Learning

50

Total

114


Approaches to Teaching and Learning:
Weekly lectures, weekly tutorials, homework assignments.

Requirements, Exclusions and Recommendations
Learning Requirements:

Calculus: familiarity with differentiation and integration. A knowledge of probability theory and random variables: probability theory, combinatorics and classic discrete and continuous random variables. Means and variances. Standard probability distributions: binomial, geometric, Poisson, normal, exponential, gamma, beta, chi-square.

Learning Recommendations:

A knowledge of probability to the level of the Probability Theory course (STAT20110).


Module Requisites and Incompatibles
Incompatibles:
STAT30280 - Inference for Data Analyti(OL)


 

Assessment Strategy
Description Timing Component Scale Must Pass Component % of Final Grade In Module Component Repeat Offered
Assignment(Including Essay): Take-home assignments Week 1, Week 2, Week 3, Week 4, Week 5, Week 6, Week 7, Week 8, Week 9, Week 10, Week 11, Week 12 Other No
20
No
Exam (In-person): 2 hours end of trimester exam End of trimester
Duration:
2 hr(s)
Other No
80
No

Carry forward of passed components
No
 

Resit In Terminal Exam
Autumn Yes - 2 Hour
Please see Student Jargon Buster for more information about remediation types and timing. 

Feedback Strategy/Strategies

• Group/class feedback, post-assessment

How will my Feedback be Delivered?

Not yet recorded.

Name Role
Ms Laura Craig Tutor
Assoc Professor Anthony Cronin Tutor
Dr Fabian Ofurum Tutor

Timetabling information is displayed only for guidance purposes, relates to the current Academic Year only and is subject to change.
Spring Lecture Offering 2 Week(s) - 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33 Thurs 09:00 - 09:50
Spring Lecture Offering 2 Week(s) - 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33 Tues 09:00 - 09:50
Spring Tutorial Offering 1 Week(s) - 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33 Thurs 17:00 - 17:50
Spring Tutorial Offering 2 Week(s) - 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33 Thurs 17:00 - 17:50