Learning Outcomes:
To introduce the students to both basic and advanced concepts involved in a variety of modern methods in biomolecular and nanoscale simulations with a focus on membranes, proteins and peptides. To prepare first-year postgraduate students for (i) understanding the statistical and quantum mechanics concepts at the basis of modern studies in computational biophysics, (ii) in-depth treatment of topics and methods in subsequent courses on molecular dynamics (MD) and structural studies of peptides, proteins or lipids, (iii) finding and reading the relevant research literature, and (iv) identifying appropriate theoretical and computational methods and levels of approximation in simulation problems related to structural studies of biomolecules in various environments. Exercises will also provide students with initial practice in how to set up, run and analyze atomistic MD simulations and what are the current approaches to running and analyzing more advanced MD simulations of biomolecular systems using some of the most popular software programs (NAMD, VMD, Gromacs, CHARMM, etc.) that are currently being developed.
Indicative Module Content:
Biophysical and biochemical structural properties of proteins and nucleic acids, and lipid membranes. The relation between structural properties and sequence information. Overview of experimental and theoretical (e.g., threading, homology modelling, etc.) methods for structure determination and prediction. Introduction to molecular dynamics (MD) and Monte Carlo (MC) methods. Force fields for protein simulations. Explicit and implicit models for water. Simulations of membranes, membrane proteins. MD and MC methods for various statistical ensembles. Free energy calculations and protein dynamical transitions. Analyzing conformational changes from classical MD simulations. Replica Exchange Molecular Dynamics (REMD). Analyzing conformational changes from REMD simulations. Rare events. Transition path sampling methods. Introduction to coarse-grained models of proteins: from lattice models, to contact potentials and distance and orientation-dependent potentials for side chain-side chain interactions. Nanomaterial-membrane/protein interactions.
Last Edited - 25th Jan 2019