Learning Outcomes:
Upon successful completion of this module a student should have the following skills:
1. Solid understanding of the main concepts and results indicated within the contents of this module.
2. The ability to apply counting arguments involving Lagrange's theorem and the class equation to deduce statements on the structure of groups.
3. The ability to compare group (via homomorphisms between them).
4. The ability to use the isomorphism theorems to identify groups.
5. The ability to build combinatorial and arithmetic arguments relying on fundamentals of group theory.
Indicative Module Content:
Basics of groups, subgroups, cyclic groups, cosets, Lagrange's theorem, normal subgroups and quotient groups, the centre of a group, homomorphisms, the isomorphism theorems, the subgroup correspondence theorem, group actions, orbits, Cayley's theorem, inner automorphisms, conjugacy, the class equation, Cauchy's theorem and p-groups.