Explore UCD

UCD Home >

MATH20290

Academic Year 2024/2025

Multivariable Calculus for Eng (MATH20290)

Subject:
Mathematics
College:
Science
School:
Mathematics & Statistics
Level:
2 (Intermediate)
Credits:
5
Module Coordinator:
Assoc Professor Thomas Unger
Trimester:
Autumn
Mode of Delivery:
On Campus
Internship Module:
No
How will I be graded?
Letter grades

Curricular information is subject to change.

This module is an introduction to calculus of several variables. In addition, the study of linear ordinary differential equations is extended from first order (seen in stage 1) to higher order. The module is currently divided into nine chapters on the following topics (details below): 1. Functions of several variables; 2. Partial derivatives, chain rule, linear approximation; 3. Gradient and directional derivatives; 4. Second order partial derivatives and the Hessian matrix; 5. The Jacobian matrix, chain rule and inverse function theorem; 6. Maxima and minima, classification of critical points; 7. Constrained optimization and Lagrange multipliers; 8. Higher order linear differential equations with constant coefficients.

[Disclaimer: module content and assessment strategies may be subject to minor changes during the trimester. These changes may not be reflected in this module descriptor at that time, but will be clearly communicated to all students via other means.]

About this Module

Learning Outcomes:

On successful completion of this module the student should be able to:1. Calculate first and second order partial derivatives. 2. Find equations of tangent lines to curves and tangent planes to surfaces.3. Determine rates of change using the chain rule. 4. Find approximate values of functions and percentage changes. 5. Calculate directional derivatives.6. Find and classify critical points of functions of several variables.7. Solve constrained extremum problems using the method of Lagrange multipliers. 8. Solve linear constant coefficient differential equations by various methods.

Indicative Module Content:

1. Functions of several variables; 2. Partial derivatives, chain rule, linear approximation; 3. Gradient and directional derivatives; 4. Second order partial derivatives and the Hessian matrix; 5. The Jacobian matrix, chain rule and inverse function theorem; 6. Maxima and minima, classification of critical points; 7. Constrained optimization and Lagrange multipliers; 8. Higher order linear differential equations with constant coefficients; 9. (Time permitting) The Laplace transform.

Student Effort Hours:
Student Effort Type Hours
Lectures

36

Tutorial

12

Specified Learning Activities

20

Autonomous Student Learning

32

Total

100


Approaches to Teaching and Learning:
Lectures: face-to-face (approx. 24 h) and on-line (approx. 12 h)

Tutorials: face-to-face. Start in Week 2. Problem Sheets are usually covered in one or two tutorials.

Requirements, Exclusions and Recommendations
Learning Requirements:

The student must have taken modules in Calculus of a single variable whose content includes the basics of differential and integral calculus. The student should also have taken an Algebra module whose learning outcomes include a working knowledge of vector geometry in 2 and 3 dimensions as well as an appreciation of matrix techniques.


Module Requisites and Incompatibles
Pre-requisite:
MATH10250 - Intro Calculus for Engineers , MATH10260 - Linear Algebra for Engineers

Incompatibles:
ECON10030 - Intro Quantitative Economics, MATH20060 - Calculus of Several Variables, MATH20140 - Multivariable Calculus (Sci)., MATH20240 - Mathematics for Engineers IV, MST20070 - Multivariable Calculus


 

Assessment Strategy
Description Timing Component Scale Must Pass Component % of Final Grade In Module Component Repeat Offered
Quizzes/Short Exercises: Midterm test (on-line) Week 7 Alternative linear conversion grade scale 40% No
15
No
Exam (In-person): Final Exam End of trimester
Duration:
2 hr(s)
Alternative linear conversion grade scale 40% No
85
No

Carry forward of passed components
No
 

Resit In Terminal Exam
Spring Yes - 2 Hour
Please see Student Jargon Buster for more information about remediation types and timing. 

Not yet recorded

Name Role
Assoc Professor Thomas Unger Lecturer / Co-Lecturer
Julius Busse Tutor

Timetabling information is displayed only for guidance purposes, relates to the current Academic Year only and is subject to change.
Autumn Lecture Offering 1 Week(s) - Autumn: All Weeks Fri 13:00 - 13:50
Autumn Lecture Offering 1 Week(s) - Autumn: All Weeks Thurs 11:00 - 11:50
Autumn Lecture Offering 1 Week(s) - Autumn: All Weeks Tues 12:00 - 12:50
Autumn Tutorial Offering 1 Week(s) - Autumn: Weeks 2-12 Thurs 13:00 - 13:50
Autumn Tutorial Offering 2 Week(s) - Autumn: Weeks 2-12 Tues 13:00 - 13:50