Learning Outcomes:
On completion of this module students should;
• Have gained an advanced knowledge and understanding of the role which DC-DC converters play in powering electronic systems and a knowledge of the technologies which underpin such converters.
• Be able to identify and distinguish between different power converter circuit topologies, formulate the circuit equations which describe their operation and hence analyse their operation.
• Be able to perform detailed design of a DC-DC converter to meet a given specification including the design of the circuit, its closed loop controller, and the design or make appropriate selection of the components from which it is built.
• Be able to simulate using advanced circuit simulation, build and test a prototype DC-DC converter circuit including the ability to conduct experiments to analyse its performance.
• Gain an understanding of the importance of engineering standards and their relevance to aspects of dc-dc converter design.
• Effectively communicate their design approach and choices through written technical reports on the laboratory work.
Indicative Module Content:
The module is divided in to three major sections with content as follows:
1) Converter Circuits: A range of commonly used non-isolated and isolated DC-DC converter circuits are analysed including Buck, Forward, Half Bridge, Full Bridge, Boost, Buck-Boost and Flyback circuits. Analysis focuses on circuit operation and analysis of losses. A range of application focused design examples are provided. Active Power Factor Correction is also covered.
2) Closed loop control of DC-DC converters: This includes the derivation of small signal linear models for DC-DC converters and the design of analogue based controllers to ensure stability. Voltage mode and current mode control are covered. Numerous desing examples are provided.
3)Components: This sections covers the choice of converter components such as capacitors, inductors, diodes and switches. Design of inductors and transformers is also covered.