Learning Outcomes:
1- A critical awareness of current challenges and opportunities in quantum machine learning
2- Demonstrate small scale research to evaluate the suitability of quantum machine learning for various scenarios
3- Compare and contrast approaches in classical machine learning against quantum machine learning
4- Leverage key technical frameworks to train, test, and evaluate quantum machine learning models
Indicative Module Content:
As a nascent field, the content of the module will reflect an ever changing theoretical and technical landscape, however, it will be structured roughly as follows:
1- Background and Fundamentals: Merging Machine Learning and Quantum Technologies
2- Short Review of Machine Learning
3- Review of Simple Quantum Programs
4- Representing, and Handling Data on a Quantum Computer
5- Quantum Machine Learning frameworks and (cloud) platforms
6- Input/output and Preprocessing
7- Characterising Performance in ML vs. QML
8- Variational Quantum Machine Learning
9- Quantum Kernel Models