Learning Outcomes:
On completion of this module students should be able to
1. Perform standard linear-algebra calculations as they relate to the mathematical foundations of Quantum Mechanics;
2. Solve standard problems for systems with finite-dimensional Hilbert spaces, e.g. the two-level system
3. Solve standard one-dimensional models including the Harmonic oscillator;
4. Use of creation and annihilation operators, including the characterisation of coherent states;
5. Compute expectation values for appropriate observables for the Hydrogen atom;
6. Explain the quantum theory of angular momentum and compute expectation values for appropriate observables. These computations will involve both the matrix representation of intrinsic angular momentum, and the spherical-harmonic representation of orbital angular momentum;
7. Add independent angular momenta in the quantum-mechanical fashion;
8. Understand the foundations of quantum logic