Learning Outcomes:
On completion of this module students should be able to:
1) Construct intermediate linear and nonlinear mathematical models, based on concepts such as dimensional analysis and the continuum hypothesis.
2) Solve differential equations analytically, using methods such as:
Partial fraction decomposition.
Separation of variables.
Chain rule.
Nonlinear mappings.
Characteristic equation method.
Integrating factor method.
Phase-plane analysis: Critical points; separatrices; linearisation near critical points.
Matrix methods.
3) Analyse properties of the solutions and describe the meaning of the solutions for the phenomena studied. Applications may include:
One-dimensional mechanical systems (linear and nonlinear).
The falling skydiver.
Nonlinear motion of a projectile.
Resonant systems with external forcing.
Nonlinear high-dimensional models such as the prey-predator model.
Population models: The effect of harvesting; the tragedy of the commons.
Infectious disease models: COVID-19