Explore UCD

UCD Home >

PHYC40120

Academic Year 2024/2025
This module introduces the theory of General Relativity, the relativistic formulation of gravity. Based on the equivalence principle, Einstein's field equations of General Relativity are discussed, including their mathematical foundation in differential geometry as needed. Linearised field equations are derived to describe weak gravitational fields, to make contact with Newton's theory of gravity, and to explain gravitational waves. The classical tests of General Relativity, in the solar system and beyond, are analysed, including current experiments to detect gravitational waves. Exact solutions of Einstein's field equations are presented, such as the static Schwarzschild solution and its black hole interpretation. Kinematics of a continuum matter distribution and isotropic cosmological models are discussed, with an emphasis on the past and future evolution of the universe.

This module is suitable for 4th-year undergraduate and graduate students, of all areas of physics and astronomy.

About this Module

Not recorded

Student Effort Hours:
Student Effort Type Hours

Not yet recorded.


Requirements, Exclusions and Recommendations

Not applicable to this module.


Module Requisites and Incompatibles
Not applicable to this module.
 

Assessment Strategy  
Description Timing Component Scale Must Pass Component % of Final Grade In Module Component Repeat Offered

Not yet recorded.


Carry forward of passed components
Not yet recorded
 

Remediation Type Remediation Timing

Not yet recorded

Please see Student Jargon Buster for more information about remediation types and timing. 

Not yet recorded